Klausur: 11022

Prüfung: Produktion, Logistik und Operations Research

WS 2011/2012

Prüfer: Prof. Dr. Karl Inderfurth

Prüfungsbogen

Vom Klausurteilnehmer auszufüllen!

Name, Vorname	Innouse generated a	
Fakultät	uria; siz glame suplanz	
Matrikelnummer	gdunenia	

Hinweise:

Dieser Klausurteil besteht aus 10 Seiten inklusive einer Leerseite für eventuell benötigte Nebenrechnungen. Verwenden Sie für Ihre Berechnungen (sofern notwendig) die beigefügte Leerseite 10 und tragen Sie anschließend das gesuchte Ergebnis in der dafür vorgesehenen Stelle im Prüfungsbogen ein. **Es werden nur diese Eintragungen bewertet.** Verwenden Sie für Ihre Eintragungen keinen Bleistift. Der Prüfungsbogen ist nach dem Ende der Klausur mit Namen, Fakultät und Matrikelnummer beschriftet abzugeben. Alle Aufgaben sind zu bearbeiten.

Bemerkung zu den Multiple-Choice-Aufgaben:

Korrekt gesetzte Kreuze erhalten eine positive Punktzahl. Falsche Antworten werden negativ bewertet und innerhalb von Teilaufgaben mit richtigen Antworten verrechnet. Eine Punktzahl von Null kann dabei innerhalb einer Teilaufgabe nicht unterschritten werden.

Zugelassene Hilfsmittel:

Nicht-programmierbare Taschenrechner ohne Kommunikations- oder Textverarbeitungsfunktion.

Punkteverteilung:

insgesamt:	60	Punkte
Aufgabe 5:	11	Punkte
Aufgabe 4:	15	Punkte
Aufgabe 3:	11	Punkte
Aufgabe 2:	11	Punkte
Aufgabe 1:	12	Punkte

Note:_	0
Unterschrift: _	O AR SW DESISTER

Nur für den Prüfer:

Aufgabe	1	2	3	4	5	insgesamt
Punkte	- alm	Control of	index do	2 23140 00	or ASI attent	

Aufgabe 1: Produktionstheorie

(12 Punkte)

Gegeben seien zwei Systeme (A) und (B) mit linearer Technologie.

(a) Ergänzen Sie die jeweils fehlende Information für das System (A), d.h. zeichnen Sie den IO-Graphen aus der gegebenen Technologiematrix für System (A). Kreuzen Sie an, welche der genannten Strukturtypen von Technologien zutrifft.

Technologiematrix System	(A)		
	√ 3	-1	-4
$\mathbf{Y}_{\mathrm{A}} =$	1	-1	0
$\mathbf{Y}_{\mathrm{A}} =$	0	-2	2
	0	1	0

IO-Graph System (A)

Strukturtyp	System (A)
Verfahrenswahl bei Inputnutzung	
Verfahrenswahl bei Outputherstellung	
inputseitig determiniert	
outputseitig determiniert	
einstufig	
mehrstufig	
elementar	
allgemein nicht elementar	

(b) Geben Sie das algebraische Modell der durch die Technologiematrix von (B) beschriebenen Technologie an.

Technologiematrix System (B)	Found deadle	Algebraisches Modell System (B)
		abe also unterschritten west in
$\begin{bmatrix} -1 & 0 \end{bmatrix}$	0	
1 -2	0	andtaling mann) entire transcensive T
$\mathbf{Y}_{\mathbf{B}} = \begin{bmatrix} 3 & -1 \end{bmatrix}$	-4	
$\mathbf{Y}_{\mathbf{B}} = \begin{bmatrix} -1 & 0 \\ 1 & -2 \\ 3 & -1 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$	0	
0 0	1	nemptra nemptra
		advant 1

(c) Kreuzen Sie an, ob folgende Aussagen wahr oder falsch sind:

		wahr	falsch
•	Eine einstufige Technologie ist stets elementar.		
•	Eine nicht-elementare Technologie ist immer gleichzeitig input- und outputseitig determiniert		
•	Eine mehrstufige Technologie ist stets nicht-elementar.		
•	Eine mehrstufige Technologie mit <i>n</i> Stufen muss stets zumindest <i>n-3</i> Zwischenprodukte enthalten.		
•	Jeder ökonomisch effiziente Prozess muss auch technisch effizient sein.		

Bei einem Rucksackproblem geht es beispielsweise um die Frage, welche Bücher zur Nutzenmaximierung auf eine Urlaubsreise mitgenommen werden sollen, wenn das maximale Gesamtgewicht bei der Mitnahme auf 9 kg beschränkt ist. Die Daten des Problems lauten wie folgt:

Buch	1	2	3	4	5
Subjektiver Nutzen	10	11	24	12	16
Gewicht	5	4	3	2	1

Dieses Problem soll mithilfe eines lokalen Suchverfahrens in Form eines reinen Verbesserungsverfahrens gelöst werden. Als zulässige Ausgangslösung wird das Mitnehmen der Bücher Nr. 2 und 3 gewählt, die auf einen Gesamtnutzen von 35 führt. Diese Lösung lässt sich durch eine Binärzahlfolge

x ⁰ :	0	1	0101	0	0
		_	-		•

(mit "1" für Mitnahme und "0" für Nicht-Mitnahme des jeweiligen Buchs) darstellen. Versteht man unter Nachbarlösungen alle Binärzahlfolgen mit genau einem Binärzahlwechsel, so ergeben sich zu \mathbf{x}^0 folgende 5 Nachbarn:

x ¹	1	1	1	0	0.
x ²	0	0	1	0	0
x ³	0	1	0	0	0
x ⁴	0	1	1	1	0
x ⁵	0	1	1	0	1

	zulässig	Nutzen
\mathbf{x}^1	aluli i nib sili	0
x ²		
x ³		
x ⁴	j.	17.0
x ⁵		

- (a) Untersuchen Sie die Lösungen x^1 bis x^5 auf Zulässigkeit (JA/NEIN) und ihren Gesamtnutzen und tragen Sie die Ergebnisse in die obige Tabelle ein!
- (b) Im Folgenden werden die Lösungen in aufsteigender Nummerierung durchsucht. Welche Lösung x würde unter Beschränkung der Suche auf zulässige Lösungen die Startlösung für die 2. Iteration des Suchverfahrens sein unter Anwendung

•	der First-fit-Lösung:	X =	1	17 - 5	AND.	
•	der Best-fit-Lösung:	x = [

•	der Best-fit-Lösung:	$_{\mathrm{X}} =$		X

(c) Man könnte das lokale Suchverfahren nach der 1. Iteration abbrechen, um das dann vorliegende Ergebnis zur Optimierung nach dem Branch & Bound-Verfahren zu nutzen. Welchen Wert hätte in diesem Fall die untere Schranke Z für das B&B-Ausgangsproblem unter Verwendung

•	der First-fit-Lösung:	<u>Z</u> =
•	der Best-fit-Lösung:	<u>Z</u> =

K	reuzen Sie an, ob die folgenden Aussagen wahr oder falsch sind:	wahr	falsch
•	Kombinatorische Optimierungsprobleme haben immer eine unendliche Anzahl an zulässigen Lösungen.		
•	Reihenfolgeprobleme lassen sich mithilfe von Binärvariablen modellieren.		

Aufgabe 3: Lineare Optimierung

(11 Punkte)

Das LOP

Max	$Z = 10x_1 + 5x_2$	u.d.N.	$x_1 + x_2 \leq$	120	(1)
			$3x_1 + x_2 \le$	200	(2)
			$x_1 + 2x_2 \le$		
			$x_1, x_2 \geq$	0	

modelliert das folgende Entscheidungsproblem: Bauer Josef besitzt 120 Hektar (ha) Ackerland und möchte darauf sowohl Mais als auch Kartoffeln anbauen. Dafür kann er maximal 200 T€ (Tausend €) investieren und für den Anbau maximal 140 Arbeitstage aufwenden. Weitere Daten des Problems enthält die folgende Tabelle:

A codució seo applicación en la	Mais	Kartoffeln
Anbaukosten (in T€ pro ha)	3	1
Arbeitstage (pro ha)	1	2
Gewinn (in T€ pro ha)	2	1

Bauer Josef möchte wissen, auf wie viel Hektar er Mais und Kartoffeln anbauen soll, damit sein Gesamtgewinn maximiert wird. Die Entscheidungsvariablen haben folgende Bedeutung:

x₁: Größe der Fläche, auf der Mais angebaut werden soll (in ha)

x₂: Größe der Fläche, auf der Kartoffeln angebaut werden sollen (in ha)

Basis	\mathbf{x}_1	x ₂	X ₃	X ₄	X ₅	Z	RHS
X ₃			7		Pr.		
\mathbf{x}_1				1			0
x ₂	SKA JUSTS	ere (KidiA)	Arta tuoligias Apia al		edi ar sene		
ZF	Advocation	ah pagrapas	military volete	nga kilang si	rogaret I s	b neprow o	buggioil a

(a) Tragen Sie in das oben gegebene Simplextableau die Werte (mit korrektem Vorzeichen), die Sie den folgenden Aussagen entnehmen können, in die korrekten Felder ein.

Aussage

Es werden auf 24 ha der zur Verfügung stehenden Fläche weder Mais noch Kartoffeln angebaut.

Werden 1 T€ weniger investiert, dann wird die Anbaufläche für Mais um 2/5 ha kleiner.

Auf 44 ha der Gesamtfläche werden Kartoffeln angebaut.

Werden 1 T€ weniger investiert, dann wird die Anbaufläche für Kartoffeln um 1/5 ha größer.

Steht ein Tag weniger für den Anbau zur Verfügung, so reduziert dies den Gesamtgewinn um 1 T€.

(b) Für ein klassisches Transportproblem mit 2 Angebotsorten (A, B) und 3 Nachfrageorten (K, L, M) enthält die folgende Tabelle die zugehörigen Transportkostensätze sowie die Angebots- und Nachfragemengen:

von	K	L	M	Angebots- mengen
A	2	1	3	8
В	4	2	6	7
Nachfragemengen	2	5	8	

Bei Lösung nach der Nordwestecken-Regel lauten die Transportmengenvariablen:

$$x_{AK} = 2$$
, $x_{AL} = 5$, $x_{AM} = 1$, $x_{BK} = 0$, $x_{BL} = 0$, $x_{BM} = 7$.

Ermitteln Sie die für diese Lösung resultierenden Transportkosten!

(c) Prüfen Sie unter Verwendung eines ersten Iterationsschritts der MODI-Methode, ob die Lösung nach der Nordwestecken-Regel aus (b) optimal sein kann. Ermitteln Sie dazu zunächst die Werte der Dualvariablen u_i und v_j bei gegebener Basislösung nach der Nordwestecken-Regel und prüfen Sie daraufhin die Opportunitätskosten der Nichtbasisvariablen. Tragen Sie anschließend die Transportmengen der Basislösung aus (b) sowie die ermittelten Werte der Dualvariablen in die unten stehende Tabelle ein.

	,				
				V	
		111			
.,					

von		nach	K	L	M	u_i
9-	A					
	В					
	Vj					

(a) Gegeben sind die folgenden Baukastenstücklisten als Information über eine Produktstruktur.

Erzeugnis P1						
SachNr.	Menge	Bezeichnung				
B1	5	Baugruppe				
E1	9	Einzelteil				

Erzeugnis B1		
SachNr.	Menge	Bezeichnung
E1	3	Einzelteil
E2	8	Einzelteil

Zeichnen Sie vollständig den zugehörigen Gozinto-Graphen!

Geben Sie für diesen Erzeugniszusammenhang die Direkt- und Gesamtbedarfsmatrix an, indem Sie die entsprechenden Daten in die folgenden Tabellen eintragen.

Direktbedarfsmatrix:

	E1	E2	B1	P1
E1		,		
E2				
B1				0,
P1				

Gesamtbedarfsmatrix:

•	E1	E2	B1	P1
E1				
E2			A)	
B1			0	
P1				

(b) Für ein Problem der dynamischen Losgrößenplanung über 4 Perioden liegen folgende Daten vor:

Periode	1	2	3	4
Bedarfsmenge in Stück	1	6	8	5

Die Fixkosten der Losbildung betragen 100 €, die Lagerhaltungskosten belaufen sich auf 10 € je Periode und Stück und der Lageranfangsbestand ist null.

Geben Sie für den Fall bedarfssynchroner sowie einmaliger Losbildung die Losgrößen der einzelnen Perioden sowie die losfixen Kosten, Lagerhaltungskosten und die Gesamtkosten an und tragen Sie die Ergebnisse in die folgenden Tabellen ein!

	Periode	1	2	3	4	anus sita ma	
	Losgröße			smiles		Summe	
	losfixe Kosten				- IÇla	sid rab lises	uk, e
	Lagerhaltungskosten					o 2 sept their	
	Gesamtkosten		-4:	2	steasical mod	auje rak esi	-
Eir	ımalige Losbildung			,	v		
	Periode	1	2	3	4		

Losgröße	it idegtes and stored as	Summe	
losfixe Kosten	•		
Lagerhaltungskosten			
Gesamtkosten			

Die optimalen Losgrößen für (b) lassen sich mithilfe eines gemischt-binären LOPs ermitteln. Für dieses LOP gilt:

• Es treten insgesamt 8 binäre Variablen auf.

• Es existieren insgesamt 8 Lagerbilanzgleichungen.

Die Zahl M bei der Formulierung der logischen Rüstbedingungen darf nicht kleiner als	
100 sein.	•

(d)	Ermitteln Sie für d	lie Date	n in Auf	gabenteil (b) die	durc	chschnittlic	he Nachfra	ige p	ro Periode
	und berechnen S	ie mit	diesem	Nachfragewert	die	optimale	Losgröße	im	statischen
	Losgrößenfall!	aticaha I	agarößa						

2.3		
3		

Gehen Sie von folgendem Modell zur Standortplanung aus:

Min
$$K = 3x_{11} + 1x_{12} + 2x_{13} + 2x_{21} + 3x_{22} + 1x_{23} + 30y_1 + 30y_2$$

u.d.N. $x_{11} + x_{21} = 10, \quad x_{11} \le 10y_1, \quad x_{21} \le 10y_2$
 $x_{12} + x_{22} = 20, \quad x_{12} \le 20y_1, \quad x_{22} \le 20y_2$
 $x_{13} + x_{23} = 25, \quad x_{13} \le 25y_1, \quad x_{23} \le 25y_2$
 $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$
 $y_1, y_2 \in \{0, 1\}$

- (a) Machen Sie zum obigen Standortplanungsproblem folgende Angaben:
 - Anzahl der potenziellen Standorte
 - Anzahl der Kunden
 - Anzahl der Binärvariablen
 - Bedarf des Kunden Nr. 2
 - Höhe der Standortfixkosten
 - Stücktransportkosten von Standort Nr. 2 zu Kunde Nr. 1
- (b) Die optimale Lösung für das obige Standortproblem lautet:

$$x_{11}^* = 0$$
, $x_{12}^* = 20$, $x_{13}^* = 0$, $x_{21}^* = 10$, $x_{22}^* = 0$, $x_{23}^* = 25$, $y_1^* = 1$, $y_2^* = 1$, $X_{23}^* = 125$

Stellen Sie zu dieser Lösung das zugehörige vollständige Transporttableau auf und tragen Sie die optimalen Transportmengen ein.

(c) Kreuzen Sie an, ob folgende Aussagen wahr oder falsch sind:

		wahr	falsch
•	Das sogenannte Zeitungsjungenproblem lässt sich mithilfe der Dynamischen Optimierung lösen.		
•	Das Vorhandensein eines Losgrößenbestandes erübrigt das Halten eines Sicherheitsbestandes.		
•	Ein Rundreiseproblem kann exakt mit dem Branch & Bound-Verfahren gelöst werden.		
•	Bei dem sogenannten Ein-Depot-Problem im Rahmen der Tourenplanung gibt es eine feste Zuordnung der Kunden zu den Depots.		
•	Das Planungsmodell der zweistufigen Transportplanung enthält immer doppelt so viele Entscheidungsvariablen wie das Modell der einstufigen Transportplanung.		

Nebenrechnungen: