Examination:

Finance (Management III) / Summer Term 2001

Examiner:

Prof. Dr. Peter Reichling

The following aids can be used:

pocket calculator

Examination questions:

Question 1 (Internal Rate of Return, Net Present Value)

(20 points)

An investments has the following cash flows:

	t _o	t_1	t ₂
$ \mathbf{I_1} $	-900	1935	-1039.5

The market rate of return is 7.0 per cent.

- a) Make a decision about the realization of the investment according to
 - i. the net present value method,
 - ii. the internal rate of return method?
 - iii. Do both methods always lead to the same result? Explain!
- b) Show graphically how the net present values depend on the rate of return used for their computation.
- c) Which rate of return maximizes the net present value (NPV)?
- d) What is the maximum NPV?

Question 2 (Stock Valuation)

(20 points)

A company will pay a dividend of 8€ per share in the next year. The management of the corporation forecasts that dividends will grow 2.5% each year. The risk-adjusted interest rate in the relevant market amounts to 8%.

- a) Why would it not be appropriate to use the risk-free rate of return to discount the cash flows?
- b) What is the current price of the share?
- c) What change of price (in per cent) results within one year?
- d) How is the price of a share affected if the growth rate increases to 3.5 per cent immediately?
- e) How is the price of a share affected if the forecasted dividends can only be realized in the first two periods and the growth rate then reduces to 1.5 per cent?

Question 3 (Term Structure)

(20 points)

The following prices of coupon bonds can be observed in the market:

	maturity	Coupon	Price	Face Value
CB_1	1 year	8.00%	1039.70 €	1000 €
CB ₂	2 years	6.50%	1043.30 €	1000 €
CB ₃	3 years	6.75%	1065.90 €	1000 €

- a) Calculate the one-year, two-year and three-year spot rates r_1 , r_2 and r_3 and show the result in a graph. How is this kind of term structure called?
- b) Calculate the forward rates f_1 , f_2 and f_3 .
- c) How are spot rates and forward rates related to each other?
- d) Calculate the yield-to-maturity of CB_1 and CB_2 .

Question 4 (Capital Asset Pricing Model)

(20 points)

- a) Make a graph of the security market line (SML) for the case where the expected return of the market portfolio M is 12 per cent and the risk-free rate of return is 4.5 per cent. What is the risk premium of the market and what is the beta of the risk-free rate of return r_f ?
- b) Suppose that an asset A has a beta of (-0.5) and an expected return of 4 per cent. Calculate the expected return in market equilibrium and compare. What are the implications for A according to the CAPM? Show in the SML-graph!
- c) Suppose that an asset B has a beta of 1.75 and an expected return of 14 per cent. Calculate the expected return in market equilibrium and compare. What are the implications for B according to the CAPM? Show in the SML-graph!
- d) Explain why the security market line (SML) is an upward sloping line.

Question 5 (Portfolio Selection)

(20 points)

Suppose there are 2 risky assets which are characterized by their expected rate of return μ_A and μ_B , their standard deviation σ_A and σ_B and their correlation coefficient ρ_{AB} .

- a) Compute the expected return and the standard deviation for a portfolio consisting of x_A shares of asset A and x_B shares of asset B $(x_A + x_B = 1)$.
- b) Compute x_A and x_B for a portfolio consisting of the assets A and B where the variance of the portfolio's expected return is minimal (minimum variance portfolio).
- c) Compute x_A , x_B and the variance of the MVP for the case where $\rho_{AB} = 0$.
- d) Calculate x_A and x_B as well as μ_P and σ_P of the minimum variance portfolio for μ_A = 9%, σ_A = 7%, σ_B = 14% and μ_B = 14% (ρ_{AB} = 0).