Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in Mathematics I

(20.07.2001)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator
- printed collection of formulas
- printed script "Mathematics for Students of Economics and Management"

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

problem	1	2	3	4	5	6	sum
points	7	8	8	7	10	10	50

Problems:

1. Given are the complex numbers

$$z_1 = 4i$$
 and $z_2 = 2 - 2\sqrt{3}i$.

- (a) Find the cartesian form a + bi of the number $\frac{z_1}{z_2}$.
- (b) Determine the power $z_3 = (z_2)^8$ as $z_3 = a + bi$.
- 2. (a) Let $\{b_n\}$, $n \in \mathbb{N}$, be a geometric sequence with the terms $b_1 = -10$ and $b_4 = \frac{16}{25}$. Which of the terms is the first with an absolute value less than $\frac{1}{100}$?
 - (b) Two economists, Mr. A and Mrs. B started their jobs on January 1, 1990. During the first year Mr. A got a fixed salary of 4.000 DM every month and his salary has been raised by 5% every year up to now. Mrs. B earned in 1990 53.000 DM and her salary has been raised by 3% every year. What was the salary of Mr. A and Mrs. B in 2000? Who of them did receive more money over the years up to the end of 2000?
- 3. Let $P(x) = x^4 2x^3 + 17x^2 32x + 16$.
 - (a) Determine all real and complex zeros of P(x).
 - (b) The function f(x) is defined as

$$f(x) = \frac{(x-1)^2(x+16)}{P(x)}.$$

Give reasons for the existence of a discontinuity at $x_0 = 1$ and find the limit $\lim_{x\to 1} f(x)$.

4. Consider the function

$$f(x) = xe^{\frac{1}{8}x^2 - x}, \quad x > 0.$$

Check for what x the rate of change $\rho_f(x)$ is greater than one.

5. A function is given by the formula

$$f(x) = \frac{2x^2 + 3x - 2}{x - 2}.$$

2

- (a) Find the domain of f, extreme points and inflection points.
- (b) Investigate monotonicity and concavity / convexity.
- 6. Let

$$f(x) = (2x - 6) \ln(x - 3).$$

- (a) Find domain, zeros and $\lim_{x\to 3} f(x)$.
- (b) Evaluate $\int_{4}^{6} f(x) dx$.

Examination in Mathematics I - Solutions

(20.07.2001)

1. (a)
$$z = \frac{1}{2}(-\sqrt{3} + i)$$

(b)
$$z_3 = 4^7(-2 - 2\sqrt{3}i) = 32,765(-1 - \sqrt{3}i)$$

- 2. (a) $|b_n| < \frac{1}{100}$ for $n \ge 9$. That means the answer is b_9 .
 - (b) Salary of Mr. A in 2000: 78,186.94 DM,
 salary of Mrs. B in 2000: 71,227.57 DM
 Mr. A received 681,925.78 DM which was more than 678,813.17 for Mrs. B
- 3. (a) zeros: $x_1 = 1$, $x_2 = 1$, $x_3 = 4i$, $x_4 = -4i$
 - (b) The function value f(1) does not exist, since x = 1 is a zero of the polynomial in the denominator. Therefore f(x) is not continuous at $x_0 = 1$.
 - (c) $\lim_{x \to 1} f(x) = 1$

4.
$$0 < x < 4 - 2\sqrt{3} \quad \lor \quad 4 + 2\sqrt{3} < x$$

5. (a) Domain $D_f = \{x \in \mathbb{R} \, | \, x \neq 2\}$

extreme points:

local maximum at $x_1 = 2 - \sqrt{6}$, local minimum at $x_2 = 2 + \sqrt{6}$ no inflection point

$$f'(x) = \frac{2x^2 - 8x - 4}{(x - 2)^2}, \quad f''(x) = \frac{24}{(x - 2)^3}$$

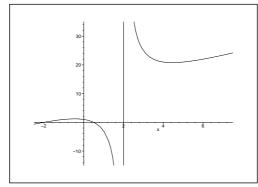


Abbildung 1: graph of the function

(b) f(x) is increasing for $x < x_1 \lor x > x_2$ and decreasing for $x_1 < x < 2 \lor 2 < x < x_2$

f(x) is concave for x < 2 and convex for x > 2.

- 6. (a) $D_f = \{x \in \mathbb{R} \mid x > 3\}, \text{ zeros: } x_1 = 4, \lim_{x \to 3} f(x) = 0$
 - (b) $\int_{4}^{6} (2x 6) \ln(x 3) dx = 9 \ln 3 4$; (partial integration)

Additionally there is the graph of the function $f(x) = 2(x-3) \ln(x-3)$ with the area which is to compute with the integral $\int_4^6 (2x-6) \ln(x-3) dx$

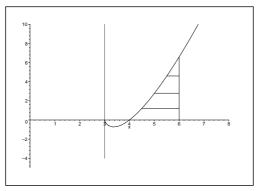


Abbildung 2: graph