Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in Mathematics I (24.07.2002)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator

- printed collection of formulas

- printed script "Mathematics for Students of Economics and Management"

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

problem	1	2	3	4	5	6	sum
points	6	5	8	14	8	9	50

Problems:

- 1. Given is the complex number z = 2 2i. Find $z_1 = z^{10}$ and $z_2 = \frac{z}{z}$. Give the results in cartesian coordinates.
- 2. Given is the sequence $\{a_n\}$ with $a_n = 6\frac{2^n}{3^{n-1}}$.
 - (a) Find $\lim_{n \to \infty} a_n$.
 - (b) Check whether the series $\sum_{n=1}^{\infty} a_n$ converges. Use quotient criterion.
- 3. Let $P(x) = x^4 5x^3 + 3x^2 + 9x$.
 - (a) Determine all real zeros of P(x).
 - (b) The function f(x) is defined as $f(x) = \frac{x^2 1}{P(x)}$. What is the domain of f(x)?
 - (c) Let $x_0 = -1$. Does exist $f(x_0)$? Find $\lim_{x \to x_0} f(x)$.
- 4. Consider the function $f: D_f \to \mathbb{R}, D_f \subseteq \mathbb{R}$ with

$$f(x) = (x - 1)[\ln(x - 1)]^2.$$

- (a) Find domain of f, extreme points and inflection points.
- (b) Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to 1+0} f(x)$.
- 5. A firm has the total-cost function

$$C(x) = \frac{1}{3}x^3 - 7x^2 + 111x + 50$$

where x is the output (the number of units produced). The demand x which is equal to the output depends on price p only:

$$x = f(p) = 100 - p.$$

- (a) Write out the total-revenue function $R = x \cdot p$ in terms of xand formulate the total-profit function G(x) = R(x) - C(x)in terms of the output x.
- (b) Find the profit-maximizing level of output x_0 and the maximum profit $G_{max}(x_0)$.
- (c) Formulate the total-profit function $G(p) = x \cdot p C(x)$ in terms of the price variable p.
- (d) Show that the price $p_0 = 100 x_0$ maximizes G(p).
- 6. (a) Find

$$\int \frac{21e^{2x}}{\sqrt[4]{e^x+1}} \, dx$$

(b) Evaluate

$$\int_{1}^{e} \frac{\ln t}{t^3} dt$$

Solutions Mathematics I (24.07.2002):

- 1. $z_1 = -2^{15}i; \quad z_2 = -i$
- 2. (a) $\lim_{n \to \infty} a_n = 0$ (b) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{2}{3} < 1$. Series converges.

3. (a)
$$x_1 = 0$$
, $x_2 = -1$, $x_3 = x_4 = 3$
(b) $D_f = \{x \in \mathbb{R} \mid x \neq 0 \land x \neq -1 \land x \neq 3\}$
(c) $f(-1)$ does not exist. $\lim_{x \to -1} f(x) = \frac{1}{8}$

4. (a) $D_f = \{x \in \mathbb{R} \mid x > 1\}$ local maximum at $(e^{-2} + 1, 4e^{-2})$, local minimum at (2, 0)inflection point at $(e^{-1} + 1, e^{-1})$

(b)
$$\lim_{x \to \infty} f(x) = \infty$$
 and $\lim_{x \to 1+0} f(x) = 0$

5. (a)
$$G(x) = x(100 - x) - \left(\frac{1}{3}x^3 - 7x^2 + 111x + 50\right)$$

(b) $x_0 = 11;$ $G_{max}(11) = 111.33$
(c) $G(p) = (100 - p)p - \left(\frac{1}{3}(100 - p)^3 - 7(100 - p)^2 + 111(100 - p) + 50\right)$
(d) $G'(p_0) = G'(89) = 0$ and $G''(89) < 0.$

6. (a)
$$\int \frac{21e^{2x}}{\sqrt[4]{e^x + 1}} dx = \sqrt[4]{(e^x + 1)^3}(12e^x - 16) + C$$

(b) $\int_{1}^{e} \frac{\ln t}{t^3} dt = -\frac{3}{4e^2} + \frac{1}{4} = 0.1485$