Fakultät für Mathematik
Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in Mathematics I

(24.07.2002)

Working time: 120 minutes
The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator
- printed collection of formulas
- printed script "Mathematics for Students of Economics and Management"

It is not allowed to use mobile phones.
Distribution of points obtainable for the problems:

problem	1	2	3	4	5	6	sum
points	6	5	8	14	8	9	50

Problems:

1. Given is the complex number $z=2-2 i$.

Find $z_{1}=z^{10}$ and $z_{2}=\frac{z}{z}$. Give the results in cartesian coordinates.
2. Given is the sequence $\left\{a_{n}\right\}$ with $a_{n}=6 \frac{2^{n}}{3^{n-1}}$.
(a) Find $\lim _{n \rightarrow \infty} a_{n}$.
(b) Check whether the series $\sum_{n=1}^{\infty} a_{n}$ converges. Use quotient criterion.
3. Let $P(x)=x^{4}-5 x^{3}+3 x^{2}+9 x$.
(a) Determine all real zeros of $P(x)$.
(b) The function $f(x)$ is defined as $f(x)=\frac{x^{2}-1}{P(x)}$. What is the domain of $f(x)$?
(c) Let $x_{0}=-1$. Does exist $f\left(x_{0}\right)$? Find $\lim _{x \rightarrow x_{0}} f(x)$.
4. Consider the function $f: D_{f} \rightarrow \mathbb{R}, D_{f} \subseteq \mathbb{R}$ with

$$
f(x)=(x-1)[\ln (x-1)]^{2} .
$$

(a) Find domain of f, extreme points and inflection points.
(b) Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow 1+0} f(x)$.
5. A firm has the total-cost function

$$
C(x)=\frac{1}{3} x^{3}-7 x^{2}+111 x+50
$$

where x is the output (the number of units produced). The demand x which is equal to the output depends on price p only:

$$
x=f(p)=100-p .
$$

(a) Write out the total-revenue function $R=x \cdot p$ in terms of x and formulate the total-profit function $G(x)=R(x)-C(x)$ in terms of the output x.
(b) Find the profit-maximizing level of output x_{0} and the maximum profit $G_{\max }\left(x_{0}\right)$.
(c) Formulate the total-profit function $G(p)=x \cdot p-C(x)$ in terms of the price variable p.
(d) Show that the price $p_{0}=100-x_{0}$ maximizes $G(p)$.
6. (a) Find

$$
\int \frac{21 e^{2 x}}{\sqrt[4]{e^{x}+1}} d x
$$

(b) Evaluate

$$
\int_{1}^{e} \frac{\ln t}{t^{3}} d t
$$

Solutions Mathematics I (24.07.2002):

1. $z_{1}=-2^{15} i ; \quad z_{2}=-i$
2. (a) $\lim _{n \rightarrow \infty} a_{n}=0$
(b) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{3}<1$. Series converges.
3. (a) $x_{1}=0, \quad x_{2}=-1, \quad x_{3}=x_{4}=3$
(b) $D_{f}=\{x \in \mathbb{R} \mid x \neq 0 \wedge x \neq-1 \wedge x \neq 3\}$
(c) $f(-1)$ does not exist. $\lim _{x \rightarrow-1} f(x)=\frac{1}{8}$
4. (a) $D_{f}=\{x \in \mathbb{R} \mid x>1\}$ local maximum at $\left(e^{-2}+1,4 e^{-2}\right)$, local minimum at $(2,0)$ inflection point at $\left(e^{-1}+1, e^{-1}\right)$
(b) $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow 1+0} f(x)=0$
5. (a) $G(x)=x(100-x)-\left(\frac{1}{3} x^{3}-7 x^{2}+111 x+50\right)$
(b) $x_{0}=11 ; \quad G_{\max }(11)=111.33$
(c) $G(p)=(100-p) p-\left(\frac{1}{3}(100-p)^{3}-7(100-p)^{2}+111(100-p)+50\right)$
(d) $G^{\prime}\left(p_{0}\right)=G^{\prime}(89)=0$ and $G^{\prime \prime}(89)<0$.
6. (a) $\int \frac{21 e^{2 x}}{\sqrt[4]{e^{x}+1}} d x=\sqrt[4]{\left(e^{x}+1\right)^{3}}\left(12 e^{x}-16\right)+C$
(b) $\int_{1}^{e} \frac{\ln t}{t^{3}} d t=-\frac{3}{4 e^{2}}+\frac{1}{4}=0.1485$
