Fakultät für Mathematik
Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in Mathematics II

(22.07.2002)

Working time: 120 minutes
The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator
- printed collection of formulas
- printed script "Mathematics for Students of Economics and Management"

It is not allowed to use mobile phones.
Distribution of points obtainable for the problems:

problem	1	2	3	4	5	6	sum
points	10	11	8	7	8	6	50

Problems:

1. Given is the matrix equation $B+X \cdot A=I$, where

$$
A=\left(\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & \alpha \\
1 & -1 & 0
\end{array}\right), \quad B=\left(\begin{array}{rrr}
-3 & 2 & 0 \\
-5 & 3 & \alpha \\
1 & 1 & -5
\end{array}\right)
$$

I is the identity matrix and $\alpha \in \mathbb{R}$.
(a) Solve the given equation for X.
(b) For which values of α does the solution X exist?
(c) Calculate X.
2. Given is the system of linear equations:

$$
\begin{array}{r}
\lambda x_{1}+x_{2}+x_{3}+x_{4}=1 \\
x_{1}+\lambda x_{2}+x_{3}+x_{4}=1 \\
x_{1}+x_{2}+\lambda x_{3}+x_{4}=1 \\
x_{1}+x_{2}+x_{3}+\lambda x_{4}=1
\end{array}
$$

(a) Check the consistence of the system as a function of the parameter λ.
(b) Give the general solution for $\lambda=1$.
(c) Find the solution for $\lambda=0$.
3. Given is the following system of linear inequalities:

$$
\begin{aligned}
x_{1}+x_{2}-5 x_{3} & \leq 12 \\
2 x_{1}+x_{2}-4 x_{3} & \leq 8 \\
9 x_{1}+4 x_{2}-18 x_{3} & \leq 45 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

(a) Find a first basic feasible solution with x_{1}, x_{2} and x_{3} as nonbasic variables.
(b) Determine a second basic feasible solution with x_{1} as basic variable by pivoting.
(c) Assume the constraints given in (a) are part of a linear programming problem with the objective function

$$
z=15 x_{1}+7 x_{2}-32 x_{3} \rightarrow \max !
$$

Check whether your second basic feasible solution calculated in (b) is an optimal solution for the linear programming problem.
4. Given is the function $f: D_{f} \rightarrow \mathbb{R}, D_{f} \subseteq \mathbb{R}^{3}$, with

$$
f(x)=x_{1} x_{2}\left(e^{x_{2}}\right)^{2}+\ln \left(x_{3} \sqrt{x_{2}+1}\right)+\frac{x_{1}}{x_{3}}-x_{1}-\frac{3}{2} x_{2} .
$$

(a) Find the domain D_{f}.
(b) Determine $\operatorname{grad} f\left(x^{(0)}\right)$ for $x^{(0)}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
5. Check whether the function f with

$$
f(x, y, z)=x^{2}+3 y^{2}+2 z^{2}
$$

subject to

$$
4 x+12 y=120 \quad \text { and } \quad 6 y+12 z=120
$$

has a local minimum at $x=6, y=8, z=6$.
Use Lagrange Multiplier Method.
6. The supply and demand functions for a good are

$$
q^{S}(p)=\frac{2}{3} p-4 ; \quad q^{D}(p)=20-2 p
$$

Assume that the price $p=p(t)$ adjusts over time according to the equation

$$
\frac{d p}{d t}=p^{\prime}=[x(p)]^{3},
$$

where $x(p)=q^{D}(p)-q^{S}(p)$ is the excess demand. The initial price is $p(0)=6$.
Find a formula for $p(t)$. The result can be given implicitly as $F(t, p)=0$.

Solutions Mathematics II (22.07.2002):

1. (a) $X=(I-B) A^{-1}$
(b) $\alpha \neq 0$
(c) $A^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2 \alpha} & \frac{1}{\alpha} & \frac{1}{2 \alpha}\end{array}\right)$
2. (a) The system is consistent for $\lambda \neq-3$. For $\lambda=1$ the set of solutions has the dimension 3, otherwise there is a unique solution.
(b) $x_{1}=1-x_{2}-x_{3}-x_{4}$ with $x_{2} \in \mathbb{R}, x_{3} \in \mathbb{R}, x_{4} \in \mathbb{R}$
(c) $x_{1}=x_{2}=x_{3}=x_{4}=\frac{1}{3}$
3. (a) $x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=12, x_{5}=8, x_{6}=45$
(b) $x_{1}=4, x_{2}=0, x_{3}=0, x_{4}=8, x_{5}=0, x_{6}=9$
(c) The solution is optimal for the linear programming problem.
4. (a) $D_{f}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} \in \mathbb{R} \wedge x_{2}>-1 \wedge x_{3}>0\right\}$
(b) $\operatorname{grad} f\left(x^{(0)}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
5. The function has there a local minimum since $\operatorname{grad} L=\mathbf{0}$ and $\left|\bar{H}_{5}\right|>0$
6. $\frac{3}{16\left(24-\frac{8}{3} p\right)^{2}}=t+\frac{3}{2^{10}}$
