Fakultät für Mathematik Institut für Mathematische Optimierung Prof. Dr. F. Werner

Examination in Mathematics II (22.07.2002)

Working time: 120 minutes

The derivation of the results must be given clearly. The statement of the result only is not sufficient.

Tools:

- pocket calculator

- printed collection of formulas

- printed script "Mathematics for Students of Economics and Management"

It is not allowed to use mobile phones.

Distribution of points obtainable for the problems:

problem	1	2	3	4	5	6	sum
points	10	11	8	7	8	6	50

Problems:

1. Given is the matrix equation $B + X \cdot A = I$, where

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & \alpha \\ 1 & -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 2 & 0 \\ -5 & 3 & \alpha \\ 1 & 1 & -5 \end{pmatrix},$$

I is the identity matrix and $\alpha \in \mathbb{R}$.

- (a) Solve the given equation for X.
- (b) For which values of α does the solution X exist?
- (c) Calculate X.
- 2. Given is the system of linear equations:

λx_1	+	x_2	+	x_3	+	x_4	=	1
x_1	+	λx_2	+	x_3	+	x_4	=	1
x_1	+	x_2	+	λx_3	+	x_4	=	1
x_1	+	x_2	+	x_3	+	λx_4	=	1

- (a) Check the consistence of the system as a function of the parameter λ .
- (b) Give the general solution for $\lambda = 1$.
- (c) Find the solution for $\lambda = 0$.
- 3. Given is the following system of linear inequalities:

x_1	+	x_2	_	$5x_3$	\leq	12
$2x_1$	+	x_2	—	$4x_3$	\leq	8
$9x_1$	+	$4x_2$	—	$18x_{3}$	\leq	45
			x_1	$, x_2, x_3$	\geq	0

- (a) Find a first basic feasible solution with x_1, x_2 and x_3 as nonbasic variables.
- (b) Determine a second basic feasible solution with x_1 as basic variable by pivoting.

(c) Assume the constraints given in (a) are part of a linear programming problem with the objective function

$$z = 15x_1 + 7x_2 - 32x_3 \rightarrow \max!$$

Check whether your second basic feasible solution calculated in (b) is an optimal solution for the linear programming problem.

4. Given is the function $f: D_f \to \mathbb{R}, D_f \subseteq \mathbb{R}^3$, with

$$f(x) = x_1 x_2 (e^{x_2})^2 + \ln(x_3 \sqrt{x_2 + 1}) + \frac{x_1}{x_3} - x_1 - \frac{3}{2} x_2.$$

(a) Find the domain D_f .

(b) Determine
$$\operatorname{grad} f(x^{(0)})$$
 for $x^{(0)} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$.

5. Check whether the function f with

$$f(x, y, z) = x^2 + 3y^2 + 2z^2$$

subject to

4x + 12y = 120 and 6y + 12z = 120

has a local minimum at x = 6, y = 8, z = 6. Use Lagrange Multiplier Method.

6. The supply and demand functions for a good are

$$q^{S}(p) = \frac{2}{3}p - 4; \quad q^{D}(p) = 20 - 2p.$$

Assume that the price p = p(t) adjusts over time according to the equation

$$\frac{dp}{dt} = p' = [x(p)]^3,$$

where $x(p) = q^{D}(p) - q^{S}(p)$ is the excess demand. The initial price is p(0) = 6.

Find a formula for p(t). The result can be given implicitly as F(t, p) = 0.

Solutions Mathematics II (22.07.2002):

1. (a)
$$X = (I - B)A^{-1}$$

(b) $\alpha \neq 0$
(c) $A^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2\alpha} & \frac{1}{\alpha} & \frac{1}{2\alpha} \end{pmatrix}$

- 2. (a) The system is consistent for $\lambda \neq -3$. For $\lambda = 1$ the set of solutions has the dimension 3, otherwise there is a unique solution.
 - (b) $x_1 = 1 x_2 x_3 x_4$ with $x_2 \in \mathbb{R}, x_3 \in \mathbb{R}, x_4 \in \mathbb{R}$

(c)
$$x_1 = x_2 = x_3 = x_4 = \frac{1}{3}$$

3. (a)
$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 12, x_5 = 8, x_6 = 45$$

(b) $x_1 = 4, x_2 = 0, x_3 = 0, x_4 = 8, x_5 = 0, x_6 = 9$

(c) The solution is optimal for the linear programming problem.

4. (a)
$$D_f = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 \in \mathbb{R} \land x_2 > -1 \land x_3 > 0\}$$

(b) $\operatorname{grad} f(x^{(0)}) = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$

5. The function has there a local minimum since $\operatorname{grad} L = \mathbf{0}$ and $|\overline{H}_5| > 0$

6.
$$\frac{3}{16\left(24-\frac{8}{3}p\right)^2} = t + \frac{3}{2^{10}}$$